Numerical Investigations of the Response of a Simplified Burner-heat exchanger System to Inlet Velocity Excitations

Naseh Hosseini,
Viktor Kornilov, Joan Teerling, Ines Lopez Arteaga and Philip de Goey

COMBURA '14 Combustion Research and Application
Kontakt der Kontinenten, Soesterberg, The Netherlands
8-9 October 2014
- Thermoacoustics
- Challenges

 - Thermoacoustic noise is currently an issue in domestic heating systems
 - Closer burner and heat exchanger in compact condensing boilers
 - The industry’s need for design rules to make thermoacoustically stable systems
- **Goal**

 - The physics of the interactions between a burner and a heat exchanger from a hydrodynamic and thermoacoustic point of view

 - In this presentation the method of modelling, implementation of CFD setup, validation of the simulations and first illustrative results will be discussed
- Numerical domain
 - Flat multi-slit burner
 - Plane 2D symmetric
 - Dimensions in mm
- The model

 - ANSYS Fluent CFD code

 - Laminar flow with energy equation

 - Species conservation

\[
\frac{\partial}{\partial t}(\rho Y_i) + \nabla \cdot (\rho \vec{v} Y_i) = -\nabla \cdot \vec{J}_i + R_i + S_i
\]

 - Single step reaction

\[CH_4 + 2(O_2 + 3.76N_2) \rightarrow CO_2 + 2H_2O + 7.52N_2\]

 - Arrhenius formulation

\[k_r = A_T \beta e^{-E_r/RT}\]

 - Modified to get the correct laminar flame speed
- Verifications

- Pseudo-1D model (0.02 × 35mm)
- Grid independency
- Verifications

 - Pseudo-1D model (0.02 × 35mm)
 - Grid independency
 - Equivalence ratio sensitivity

![Graph showing equivalence ratio and SI values across various studies.](image)
- Verifications

 • Pseudo-1D model \((0.02 \times 35\text{mm})\)

 • Grid independency

 • Equivalence ratio sensitivity

 • Unburnt temperature sensitivity

![Graph showing comparison of different studies](image)
- 2D grid, using 1D conclusions, 165,000 elements
- Flame transfer function

 - Velocity perturbation as input and heat release rate as output
 - Step increase of 5% with assumed linearity, 40ms relaxation time
 - The (complex) flame transfer function defined as relative flame response divided by the relative upstream velocity perturbation, in frequency domain

\[
TF(f) = \frac{q'(f)/\bar{q}}{u'(f)/\bar{u}}
\]
- Case studies

<table>
<thead>
<tr>
<th>Distance between Burner Deck and Heat Exchanger (mm)</th>
<th>Inlet Velocity (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Hex05-V25 Hex05-V50</td>
</tr>
<tr>
<td>10</td>
<td>Hex10-V25 Hex10-V50</td>
</tr>
<tr>
<td>15</td>
<td>Hex15-V25 Hex15-V50</td>
</tr>
<tr>
<td>N/A</td>
<td>NoHex-V25 NoHex-V50</td>
</tr>
</tbody>
</table>

- P = 1atm
- Symmetry
- T = 350K
- T = 500K
- V = 25-50cm/s
- T = 300K
- Left: inlet velocity 25 cm/s

 • Reaction rate (kmol/m³s)

- Right: inlet velocity 50 cm/s

 • Temperature (K)
- Flow field through flame and around heat exchanger
- Offset for Hex05V50
- Response to square excitation
Case Studies with Heat Exchanger
Acknowledgement

Conclusions

Results

Numerical Model

Introduction

ReacTF - V50

NoHex Hex15 Hex10 Hex05

Gain

Phase

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

Gain

0.0 1.0 1.2 1.4 1.6

0.0 0.2 0.4 0.6 0.8

0.0 0.1 0.2 0.3

0.0 0.1 0.2 0.3

Phase / \pi \text{ (rad)}

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

Gain

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

Phase / \pi \text{ (rad)}

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

Gain

Frequency (Hz)

0 100 200 300 400 500 600 700 800 900 1000

Phase / \pi \text{ (rad)}

Frequency (Hz)
Introduction

Numerical Model

Results

Conclusions

Acknowledgement

Gain

- Hex15
- Hex10
- Hex05

Phase

- Hex15
- Hex10
- Hex05

HexTF - V50

Time

Normalized Heat Exchanger Heat Flux

- Hex15
- Hex10
- Hex05

Frequency (Hz)

0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Normalized Heat Exchanger Heat Flux

0, 5, 10, 15, 20, 25, 30, 35, 40

Phase/π (rad)

- Hex15
- Hex10
- Hex05

Normalized Heat Exchanger Heat Flux

0.96, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.04

Time (ms)

0, 5, 10, 15, 20, 25, 30, 35, 40

HEX TF-V50

Normalized Heat Exchanger Heat Flux

- Hex15
- Hex10
- Hex05

Time (ms)

0, 5, 10, 15, 20, 25, 30, 35, 40
Results

DeckTF - V50

- **Gain**
 - Frequency (Hz)
 - Gain
 - NoHex, Hex15, Hex10, Hex05

- **Phase**
 - Phase/\(\pi\) (rad)
 - Frequency (Hz)
 - NoHex, Hex15, Hex10, Hex05

- **Time**
 - Normalized Burner Deck Heat Flux
 - Flow Time (ms)
 - NoHex, Hex15, Hex10, Hex05
- The possibility of calculating a total transfer function

\[
\frac{Q_{\text{flame}}}{Q_{\text{input}}} TF_{\text{flame}} + \frac{Q_{\text{hex}}}{Q_{\text{input}}} TF_{\text{hex}} + \frac{Q_{\text{deck}}}{Q_{\text{input}}} TF_{\text{deck}}
\]

\[
TF_{\text{flame}} + \frac{Q_{\text{hex}}}{Q_{\text{flame}}} TF_{\text{hex}}
\]

\[
TF_{\text{total}} = TF_{\text{flame}} - \left| \frac{Q_{\text{hex}}}{Q_{\text{flame}}} \right| TF_{\text{hex}}
\]

Transfer Function

- Comparison with transfer matrix
- The possibility of calculating a total transfer function
- Experimental setup
- The model accurately predicts combustion properties

- Absolute heat release changes with approaching hex, but normalized values and flame transfer function don’t

- Impingement causes intense flame cooling, counter phase behavior, and in special cases some degree of offset

- Decoupling elements transfer function in order to construct a total transfer function enables better system identification and thermoacoustic design possibilities
The presented work is part of the Marie Curie Initial Training Network Thermo-acoustic and Aero-acoustic Nonlinearities in Green Combustors with Orifice Structures (TANGO). We gratefully acknowledge the financial support from the European Commission under call FP7-PEOPLE-ITN-2012.